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We identified rare coding variants associated with Alzheimer’s 
disease in a three-stage case–control study of 85,�33 subjects. 
In stage �, we genotyped 34,�74 samples using a whole-
exome microarray. In stage 2, we tested associated variants 
(P < � × �0−4) in 35,962 independent samples using de novo 
genotyping and imputed genotypes. In stage 3, we used an 
additional �4,997 samples to test the most significant stage 
2 associations (P < 5 × �0−8) using imputed genotypes. We 
observed three new genome-wide significant nonsynonymous 
variants associated with Alzheimer’s disease: a protective 
variant in PLCG2 (rs72824905: p.Pro522Arg, P = 5.38 × �0−�0, 
odds ratio (OR) = 0.68, minor allele frequency (MAF)cases = 
0.0059, MAFcontrols = 0.0093), a risk variant in ABI3 (rs6�6338: 
p.Ser209Phe, P = 4.56 × �0−�0, OR = �.43, MAFcases = 0.0��, 
MAFcontrols = 0.008), and a new genome-wide significant 
variant in TREM2 (rs�43332484: p.Arg62His, P = �.55 × �0−�4, 
OR = �.67, MAFcases = 0.0�43, MAFcontrols = 0.0089), a known 
susceptibility gene for Alzheimer’s disease. These protein-
altering changes are in genes highly expressed in microglia 
and highlight an immune-related protein–protein interaction 
network enriched for previously identified risk genes in 
Alzheimer’s disease. These genetic findings provide additional 
evidence that the microglia-mediated innate immune response 
contributes directly to the development of Alzheimer’s disease.

Late-onset Alzheimer’s disease (LOAD) has a substantial genetic com-
ponent (h2 = 58–79%)1. Nearly 30 LOAD susceptibility loci2–12 are 
known, and risk is highly polygenic13. However, these loci explain 
only a proportion of disease heritability. Rare variants also con-
tribute to disease risk14–17. Recent sequencing studies identified a 
number of genes that have rare variants associated with Alzheimer’s 
disease9–11,18–24. Our approach to rare variant discovery is to geno-
type a large sample with microarrays targeting known exome variants 
with follow-up using genotyping and imputed genotypes in a large 
independent sample. This is a cost-effective alternative to de novo 
sequencing25–29.

We applied a three-stage design (Supplementary Fig. 1) using 
subjects from the International Genomics of Alzheimer’s Project 
(IGAP) (Table 1 and Supplementary Tables 1 and 2). In stage 1, we 
genotyped 16,097 LOAD cases and 18,077 cognitively normal elderly  

controls using the Illumina HumanExome microarray. Data from 
multiple consortia were combined in a single-variant meta-analy-
sis (Online Methods) assuming an additive model. In total, 241,551 
variants passed quality control (Supplementary Table 3). Of these, 
203,902 were polymorphic, 26,947 were common (MAF ≥ 5%), and 
176,955 were low frequency or rare (MAF < 5%). We analyzed com-
mon variants using a logistic regression model in each sample cohort 
and combined data using METAL30. Rare and low-frequency vari-
ants were analyzed using the score test and data were combined with 
SeqMeta31 (Supplementary Fig. 2).

We reviewed cluster plots for variants showing association (P < 1 × 
10−4) and identified 43 candidate variants (Supplementary Table 4),  
excluding known risk loci (Supplementary Table 5). In stage 2, we 
tested these for association in 14,041 LOAD cases and 21,921 con-
trols, using genotypes derived from de novo genotyping and impu-
tation (Online Methods). We carried forward single-nucleotide  
variants (SNVs) with genome-wide significant associations and 
consistent directions of effect to stage 3 where genotypes for 6,652 
independent cases and 8,345 controls were imputed using the 
Haplotype Reference Consortium resource32,33 (Online Methods and 
Supplementary Table 6).

We identified four rare coding variants with genome-wide significant 
association signals with LOAD (P < 5 × 10−8) (Table 2 and Supplementary 
Tables 7 and 8). The first is a missense variant p.Pro522Arg (P = 5.38 
× 10−10, OR = 0.68) in PLCG2 (phospholipase C γ2) (Fig. 1a, Table 2, 
Supplementary Fig. 3, and Supplementary Table 9). This variant is asso-
ciated with decreased risk of LOAD, showing a MAF of 0.0059 in cases 
and 0.0093 in controls. The reference allele (Pro522) is conserved across 
several species (Supplementary Fig. 4). Gene-wide analysis showed 
nominal evidence for association at P = 1.52 × 10−4 (Supplementary 
Tables 10 and 11), and we found no other independent association at 
this gene (Supplementary Fig. 5).

The second new association is a missense change p.Ser209Phe  
(P = 4.56 × 10−10, OR = 1.43) in ABI3 (B3-domain-containing tran-
scription factor ABI3). The Phe209 allele showed consistent evidence 
for increasing LOAD risk across all stages, with a MAF of 0.011 in 
cases and 0.008 in controls (Fig. 1b, Table 2, Supplementary Fig. 6, 
and Supplementary Table 12). The reference allele is conserved across 
multiple species (Supplementary Fig. 7). Gene-wide analysis showed 
nominal evidence of association (P = 5.22 × 10−5) (Supplementary 

Rare coding variants in PLCG2, ABI3, and TREM2 
implicate microglial-mediated innate immunity in 
Alzheimer’s disease
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Tables 10 and 11). The B4GALNT2 gene, adjacent to ABI3, contained 
an independent suggestive association (Supplementary Fig. 8), but 
this failed to replicate in subsequent stages (Pcombined = 1.68 × 10−4) 
(Supplementary Table 7).

Following reports of suggestive association with LOAD34,35, we 
report the first evidence for genome-wide significant association at 
TREM2 coding variant p.Arg62His (P = 1.55 × 10−14, OR = 1.67), with 
a MAF of 0.0143 in cases and 0.0089 in controls (Fig. 1c, Table 2,  
Supplementary Figs. 9 and 10, and Supplementary Table 13). We 
also observed evidence of association for the previously reported9,11 
TREM2 rare variant p.Arg47His (Table 2). These variants are not in 
linkage disequilibrium (Supplementary Table 14), and conditional 
analyses confirmed that p.Arg62His and p.Arg47His are independ-
ent risk variants (Supplementary Fig. 11). Gene-wide analysis of 
TREM2 showed a genome-wide significant association (PSKAT = 1.42 
× 10−15) (Supplementary Tables 10 and 11). Removal of p.Arg47His 
and the p.Arg62His variants from the analysis diminished the gene-
wide association, but the signal remained interesting (PSKAT-O = 
6.3 × 10−3, PBurden = 4.1 × 10−3). No single SNV was responsible for 
the remaining gene-wide association (Supplementary Fig. 11 and 
Supplementary Table 13), suggesting that there are additional risk 

variants in TREM2. We previously reported a common variant asso-
ciation with LOAD near TREM2, in a genome-wide association study 
(GWAS) of cerebrospinal fluid tau and phosphorylated tau (P-tau)36. 
We also observed a different suggestive common variant signal in 
another LOAD case–control study (P = 6.3 × 10−7)2.

We previously identified eight gene pathway clusters significantly 
enriched in common variants associated with Alzheimer’s disease36. 
To test whether biological enrichments observed in common variants 
are also present in rare variants, we used the rare variant data (MAF < 
1%) to reanalyze these eight Alzheimer’s disease–associated pathway 
clusters (Online Methods and Supplementary Table 15). We used 
Fisher’s method to combine gene-wide P values for all genes in each 
cluster. After correction for multiple testing, we observed enrichment 
for immune response (P = 8.64 × 10−3), cholesterol transport (P = 3.84 
× 10−5), hemostasis (P = 2.10 × 10−3), clathrin–AP2 adaptor complex 
(P = 9.20 × 10−4), and protein folding (P = 0.02). We also performed 
pathway analyses on the rare variant data presented here using all 
9,816 pathways used previously. The top pathways are related to lipo-
protein particles, cholesterol efflux, B cell differentiation and immune 
response, areas of biology also enriched when common variants are 
analyzed37 (Supplementary Table 16).

table 1 summary of the consortium data sets used for stages 1–3
Consortium n controls n cases n total

Stage 1 GERAD/PERADES 2,974 6,000 8,974

ADGC 7,002 8,706 15,708

CHARGE 8,101 1,391 9,492

Total 18,077 16,097 34,174

Stage 2 GERAD/PERADES genotype 5,049 4,049 9,098

CHARGE, genotype 1,839 1,434 3,273

CHARGE, in silico 3,246 722 3,968

EADI, genotype 11,787 7,836 19,623

Total 21,921 14,041 35,962

Stage 3 ADGC, in silico 8,345 6,652 14,997

Stage 1–3 total 48,402 37,022 85,133

Data are from the Genetic and Environmental Risk for Alzheimer’s Disease (GERAD)/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease (PERADES) 
Consortium, the Alzheimer’s Disease Genetic Consortium (ADGC), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), and the European Alzheimer’s 
disease Initiative (EADI) (supplementary Note).
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Figure 1 Association plots of PLCG2, ABI3, and TREM2. (a) Regional plot of identified association at the PLCG2 locus. Top hit rs72824905 is 
indicated in purple. Data presented for rs72824905 include data from stage 1, stage 2, and stage 3 (n = 84,905). (b) Regional plot of identified 
association at the ABI3 locus. Top hit rs616338 is indicated in purple. Data presented for rs616338 include data from stage 1, stage 2, and stage 3  
(n = 84,493). (c) Regional plot of identified association at the TREM2 locus. Top hit rs75932628 is indicated in purple. Data presented for 
rs75932628 and rs143332484 include data from stage 1, stage 2, and stage 3 (n = 80,733 and 53,042, respectively). SNVs with missing LD 
information are shown in gray.
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Previous analysis of normal brain coexpression networks identi-
fied four gene modules that are enriched for common variants asso-
ciated with LOAD risk2,3711. These four modules are enriched for 
immune-response genes. We identified 151 genes present in two 
or more of these four modules, and these showed a strong enrich-
ment for LOAD-associated common variants (P = 4.0 × 10−6)36 and  
for rare variants described here (MAF < 1%) (P = 1.17 × 10−6; 
Supplementary Table 15). We then used a set of high-quality pro-
teinprotein interactions37 to construct, from these 151 genes, an 
interaction network containing 56 genes, including PLCG2, ABI3, 
and TREM2 (Fig. 2 and Online Methods). This subset is strongly 
enriched for association signals from both the previous common 
variant analysis (P = 5.0 × 10−6; Supplementary Table 17) and 
this rare variant gene set analysis (P = 1.08 × 10−7; Supplementary  
Table 15). The remaining 95 genes only have nominally significant enrich-
ment for either common or rare variants (Supplementary Tables 15  
and 17), suggesting that the 56-gene (Supplementary Table 18) net-
work is driving the enrichment.

TREM2, ABI3, and PLCG2 have a common expression pattern 
in human brain cortex, with high expression in microglia cells and 
limited expression in neurons, oligodendrocytes, astrocytes, and 
endothelial cells (Supplementary Fig. 12)38. Other known LOAD-
associated loci with the same expression pattern included SORL1, the 
MS4A gene cluster, and HLA-DRB1. PLCG2, ABI3, and TREM2 are 
upregulated in LOAD human cortex and in two amyloid precursor 
protein (APP) mouse models. However, when corrected for levels of 

other microglial genes, these changes in expression appeared to be 
related to microgliosis (Supplementary Tables 19 and 20).

PLCG2 (Supplementary Fig. 13) encodes a transmembrane sign-
aling enzyme (PLCγ2) that hydrolyzes the membrane phospholipid 
PIP2 (1-phosphatidyl-1d-myoinositol 4,5-bisphosphate) to secondary 
messengers IP3 (myoinositol 1,4,5-trisphosphate) and DAG (diacyl-
glycerol). IP3 is released into the cytosol and acts at the endoplasmic 
reticulum where it binds to ligand-gated ion channels to increase cyto-
plasmic Ca2+. DAG remains bound to the plasma membrane where it 
activates two major signaling molecules, protein kinase C (PKC) and 
Ras guanyl-nucleotide-releasing proteins (RasGRPs), which initiate 
the NF-κB and mitogen-activated protein kinase (MAPK) pathways. 
While the IP3–DAG–Ca2+ signaling pathway is active in many cells 
and tissues, in brain PLCG2 is primarily expressed in microglial cells. 
PLCG2 variants also cause antibody deficiency and immune dysreg-
ulation (PLAID) and autoinflammation and PLAID (APLAID)39. 
Genomic deletions (PLAID) and missense mutations (APLAID) affect 
the cSH2 autoinhibitory regulatory region. The result is a complex 
mix of loss and gain of function in cellular signaling39.

Functional annotation (Supplementary Table 21) suggests that 
ABI3 (Supplementary Fig. 14) has a role in the innate immune 
response via interferon-mediated signaling40. ABI3 is coexpressed 
with INPP5D (P = 2.2 × 10−10), a gene previously implicated in LOAD 
risk2. ABI3 has an important role in actin cytoskeleton organization 
through participation in the WAVE2 complex41, a complex that regu-
lates multiple pathways leading to T cell activation42.

table 2 summary of stages 1, 2 and 3 and combined meta-analysis results for sNVs at P < 5 × 10−8

SNV rs75932628 rs143332484 rs72824905 rs616338

Chr. 6 6 16 17

Position (bp) 41,129,252 41,129,207 81,942,028 47,297,297

Protein variation Arg47His Arg62His Pro522Arg Ser209Phe

Gene TREM2 TREM2 PLCG2 ABI3
Effect allele T T G T

stage 1
P 3.02 × 10−12 3.48 × 10−9 1.19 × 10−5 2.16 × 10−5

OR 2.46 1.58 0.65 1.42

MAFcases 0.003 0.015 0.006 0.013

MAFcontrols 0.001 0.010 0.011 0.010

N 30,018 33,786 33,786 33,786

stage 2
P 4.38 × 10−8 3.66 × 10−7 1.35 × 10−4 8.37 × 10−5

OR 2.37 3.97 0.70 1.41

MAFcases 0.004 0.014 0.006 0.010

MAFcontrols 0.002 0.006 0.008 0.008

N 35,831 3,968 35,831 35,831

stage 3
P 1.23 × 10−6 2.45 × 10−3 2.48 × 10−2 1.75 × 10−2

OR 2.58 1.55 0.69 1.58

MAFcases 0.006 0.012 0.006 0.010

MAFcontrols 0.003 0.008 0.007 0.008

N 14,884 15,288 15,288 14,876

stage 1–3 meta-analysis
P 5.38 × 10−24 1.55 × 10−14 5.38 × 10−10 4.56 × 10−10

OR 2.46 1.67 0.68 1.43

MAFcases 0.004 0.014 0.006 0.011

MAFcontrols 0.002 0.009 0.009 0.008

N 80,733 53,042 84,905 84,493

Data include P value, odds ratios (OR), minor allele frequency (MAF) in cases and controls, and number of subjects included in each analytical stage. For OR 95% confidence 
intervals, see supplementary table 7. Concordance for alternate allele carrier genotypes between imputed versus called SNPs in stage 3 was 75.2% for rs75932628, 91.1% for 
rs143332484, 95.7% for rs72824905, and 81.9% for rs616338 (Online Methods and supplementary table 6). Chr., chromosome.
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TREM2 encodes a transmembrane receptor present in the plasma 
membrane of brain microglia (Supplementary Fig. 15). TREM2 
protein forms an immune-receptor-signaling complex with DAP12. 
Receptor activation results in activation of Syk and ZAP70 signaling, 
which in turn activates PI3K activity and influences PLCγ2 activ-
ity43. In microglia, TREM2–DAP12 induces M2-like activation44 and 
participates in recognition of membrane debris and amyloid depos-
its, resulting in microglial activation and proliferation45–47. When 
Trem2-homozygous-knockout or Trem2-heterozygous-knockout 

mice are crossed with APP transgenics that develop plaques, the 
size and number of microglia associated with plaques are mark-
edly reduced46,47.TREM2 risk variants are located within exon 2,  
which is predicted to encode the conserved ligand-binding extra-
cellular region of the protein. Any disruption in this region may  
attenuate or abolish TREM2 signaling, resulting in loss or decrease 
in TREM2 function47.

The 56-gene interaction network identified here is enriched in 
immune-response genes and includes TREM2, PLCG2, ABI3, SPI1, 

INPP5D

CARD9 APBB1IP

HCLS1
FCER1G

HCST

SYK

PTPN6
CMTM7

BLNK

TYROBP

CD4

CD86

B2M
IRF8

IKZF1

LYZ

SPI1

CD33

TREM2

PLCG2

FCGR2A

HCK

CD14

LY96

PLCB2
SERPINA1

CFD

C3

SCIN

RGS10

ADORA3

C3AR1

CXCL16

CX3CR1

P2RY13

LPAR5

RGS18

RGS19

CSF1R

DOCK2

NCF4

CYBA

HMHA1
ARHGDIB

FGD3

ARHGAP24

RAC2

ARHGAP30

GMIP

NCKAP1L
AB13

LY86

ITGAM CEBPA

LPAR6

Figure 2 Protein–protein interaction network (using high-confidence human interactions from the STRING database) of 56 genes enriched for both 
common and rare variants associated with Alzheimer’s disease risk. Colors of edges refer to the type of evidence linking the corresponding proteins: red, 
gene fusion; dark blue, co-occurrence; black, coexpression; magenta, experiments; cyan, databases; light green, text mining; mauve, homology. TREM2, 
PLCG2, and ABI3 are highlighted by red circles, SYK, CSF1R, and TYROBP are highlighted by blue circles, and INPP5D, SPI1, and CD33 identified as 
common variant risk loci2,5–7 are highlighted by black circles.



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

Nature GeNetics  ADVANCE ONLINE PUBLICATION 5

l e t t e r s

INPP5D, CSF1R, SYK, and TYROBP (Fig. 2). SPI1 is a central tran-
scription factor in microglial activation state that has a significant 
gene-wide association with Alzheimer’s disease5 and is in the proximity 
of genome-wide significant signals identified by IGAP2. Loss-of-func-
tion mutations in CSF1R cause hereditary diffuse leukoencepha-
lopathy with spheroids, a white matter disease related to microglial 
dysfunction48. Activated microglial cells surround plaques49,50, a find-
ing consistently observed in Alzheimer’s disease brain in humans and 
transgenic mouse models of Alzheimer’s disease51. In the brains of 
mouse models of Alzheimer’s disease, synaptic pruning associates with 
activated microglial signaling52. Pharmacological targeting of CSF1R 
inhibits microglial proliferation and shifts the microglial inflamma-
tory profile to an anti-inflammatory phenotype in mouse models53. 
SYK regulates amyloid-β production and tau hyperphosphorylation54, 
is affected by the INPP5D–CD2AP complex55 encoded by two LOAD-
associated genes2, and mediates phosphorylation of PLCγ2 (ref. 56). 
Notably, the antihypertensive drug nilvadipine, currently in a phase 
3 Alzheimer’s disease clinical trial, targets SYK as well as TYROBP, 
a hub gene in an Alzheimer’s disease–related brain expression net-
work38 that encodes the TREM2 complex protein DAP12.

We identified three rare coding variants in PLCG2, ABI3, and 
TREM2 with genome-wide significant associations with LOAD that 
are part of a common innate immune response. This work provides 
additional evidence that the microglial response in LOAD is directly 
part of a causal pathway leading to disease and is not simply a down-
stream consequence of neurodegeneration46,47,57,58. Our network 
analysis supports this conclusion. In addition, PLCγ2, as an enzyme, 
represents the first classically druggable target, to our knowledge, 
to emerge from LOAD genetic studies. The variants described here 
account for a small portion of the ‘missing heritability’ of Alzheimer’s 
disease. The remaining heritability may be due to a large number 
of common variants of small effect. For rare variants, there may be 
additional exonic sites with lower MAF or effect size, and/or intronic 
and intergenic sites. Complete resolution of the heritability for  
Alzheimer’s disease will be facilitated by larger sample sizes and more 
comprehensive sequence data.

MeTHOdS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINe MeTHOdS
Genotyping and quality control. Stage 1. GERAD/PERADES. Genotyping was 
performed at Life and Brain, Bonn, Germany, with Illumina HumanExome 
BeadChip v1.0 (n = 247,870 variants) or v1.1 (n = 242,901 variants). Illumina’s 
GenTrain version 2.0 clustering algorithm in GenomeStudio or zCall59 was 
used for genotype calling. Quality control filters were implemented for sample 
call rate excluding samples with >1% missingness, excess autosomal heterozy-
gosity excluding outliers based on <1% and >1% MAF separately, sex discord-
ance, relatedness excluding one of each pair related with identity by descent 
(IBD) ≥ 0.125 (the level expected for first cousins), and population outliers 
(non-European ancestry). Variants were filtered on the basis of call rate exclud-
ing variants with >1% missingness, genotype cluster separation excluding vari-
ants with a separation score <0.4, and Hardy–Weinberg equilibrium excluding 
variants with PHWE < 1 × 10−4. Ten principal components were extracted using 
EIGENSTRAT, including the first three principal components as covariates 
had the maximum impact on the genomic control inflation factor, λ (ref. 60). 
After quality control, 6,000 LOAD cases and 2,974 elderly controls (version 
1.0, 4,093 LOAD cases and 1,599 controls; version 1.1, 1,907 LOAD cases and 
1,375 controls) remained. The version 1.0 array had 244,412 variants available 
for analysis and 239,814 remained for the version 1.1 array.

CHARGE. All four CHARGE cohorts were genotyped for the Illumina 
HumanExome BeadChip v1.0. To increase the quality of the rare variant gen-
otype calls, the genotypes for all four studies were jointly called with 62,266 
samples from 11 studies at the University of Texas HSC at Houston61. Quality 
control procedures for the genotype data were performed both centrally at UT 
Houston and at each study. The central quality control procedures have been 
described previously61. Minimum quality control included (i) concordance 
checking with GWAS data and removal of problematic samples; (ii) removal 
of individuals with low genotype completion rate (<90%); (iii) removal of vari-
ants with low genotype call rate (<95%); (iv) removal of individuals with sex 
mismatches; (v) removal of one individual from duplicate pairs; (vi) removal of 
first-degree relatives on the basis of genetically calculated relatedness (identity 
by state (IBS) > 0.45), with cases retained over controls; and (vii) removal 
of variants not called in over 5% of the individuals and those that deviated 
significantly form the expected Hardy–Weinberg equilibrium proportions  
(P < 1 × 10−6).

ADGC. Genotyping was performed in subsets at four centers: NorthShore, 
Miami, WashU, and CHOP (CHOP and ADC7 data sets) on the Illumina 
HumanExome BeadChip v1.0. One variant, rs75932628 (p.Arg47His) in 
TREM2, clustered poorly across all ADGC cohorts and was therefore regeno-
typed using a TaqMan assay. Data on all samples underwent standard quality 
control procedures applied to GWAS, including exclusion of variants with call 
rates <95% and filtering out of samples with call rate <95%. Variants with MAF 
>0.01 were evaluated for departure from Hardy–Weinberg equilibrium and any 
variants with PHWE < 10−6 were excluded. Population substructure within each 
of the five subsets (NorthShore, Miami, WashU, CHOP, and ADC7) was exam-
ined using principal-component analysis in EIGENSTRAT62, and population 
outliers (>6 s.d. from the mean) were excluded from further analyses; the first 
three principal components were adjusted for as covariates in association test-
ing. Prior to analysis, we harmonized the alternate and reference alleles over 
all data sets. See Supplementary Table 3 for an overview of cohort genotype 
calling and quality control procedures. All sample genotyping and quality 
control were performed with blinding to participants’ disease status.

Stage 2. Twenty-two variants were successfully designed for replication 
genotyping on the Agena Bioscience MassARRAY platform. Genotyping was 
performed at Life and Brain, Bonn, Germany, and the Centre National de 
Génotypage (CNG), Paris, France. Twenty-one variants were successfully 
genotyped, with one variant (rs147163004 in ASTN2) failing visual cluster 
plot inspection. An additional nine variants were successfully genotyped using 
the Agena Bioscience MassARRAY platform or Thermo Fisher TaqMan assays 
at the CNG, Paris, France, in a subset of the replication samples, n = 16,850 
(7,755 cases, 9,095 controls).

GERAD/PERADES and ACE quality control. Filters were implemented 
for sample call rate, excluding samples with >10% missingness and excess  
autosomal heterozygosity via visual inspection. Variants were filtered 
on the basis of call rate, excluding variants with >10% missingness, and  

Hardy–Weinberg equilibrium, excluding variants with PHWE < 1 × 10−5 in 
either cases or controls.

IGAP and EADI QC. Variants were genotyped in three different panels, and 
quality control was performed in each panel separately. Samples with more 
than three missing genotypes were excluded, as were males heterozygous for 
X chromosome variants present within the genotyped panels. Variants were 
excluded on the basis of missingness >5%, Hardy–Weinberg equilibrium (in 
cases and controls separately) < 1 × 10−5, and differential missingness between 
cases and controls < 1 × 10−5, for each country cohort. All variants passed 
quality control. Principal components were determined using previously 
described methods.

Stage 3. Replication was performed using genotypes from 23 ADGC data 
sets as described above. The genotyping arrays used have been described 
in detail before for most data sets, except for the CHAP, NBB, TARCC, and 
WHICAP data sets. CHAP and WHICAP data sets were genotyped on the 
Illumina OmniExpress-24 array, while NBB was genotyped on the Illumina 
1M platform. TARCC first-wave subjects were genotyped using the Affymetrix 
6.0 microarray chip, while subjects in the second wave (172 cases and 74 con-
trols) were genotyped using the Illumina HumanOmniExpress-24 BeadChip. 
Second-wave TARCC subjects (TARCC2) were genotyped together with 84 
cases and 115 controls from second-wave samples ascertained at the University 
of Miami and Vanderbilt University. All samples used in stage 3 were imputed 
to the HRC haplotype reference panel32,33, which includes 64,976 haplotypes 
with 39,235,157 SNPs that allows imputation down to an unprecedented  
MAF of 0.00008.

Prior to imputation, all genotype data underwent quality control procedures 
that have been described extensively elsewhere2,7. Imputation was performed 
on the Michigan Imputation Server (https://imputationserver.sph.umich.
edu/) running Minimac363,64. Genotypes from genome-wide, high-density 
SNP genotyping arrays for 16,175 Alzheimer’s disease cases and 17,176 indi-
viduals with normal cognition were imputed. Across all samples, 39,235,157 
SNPs were imputed, with the actual number of SNPs imputed for each indi-
vidual varying based on the regional density of array genotypes available. 
As a subset of these samples had also been genotyped as part of stage 1, we 
examined the imputation quality for critical variants by comparing imputed 
genotypes to those directly genotyped by the exome array; overall concordance 
was >99%, while concordance among alternate allele genotypes (heterozygotes 
and alternate allele homozygotes) was >88.5% on average (n = 13,000 samples). 
Concordance between stage 3 imputed genotypes and exome chip genotypes 
for replicated SNPs is reported in Supplementary Table 6.

Analysis. Stage 1. We tested association with LOAD using logistic regression 
modeling for common and low-frequency variants (MAF > 1%) and imple-
menting maximum-likelihood estimation using the score test and seqMeta 
package for rare variation (MAF ≤ 1%). Analyses were conducted globally in 
the GERAD/PERADES consortium and for each contributing center in the 
CHARGE and ADGC consortia under two models: (i) an ‘unadjusted’ model, 
which included minimal adjustment for possible population stratification, 
using country of origin and the first three principal components from princi-
pal-component analysis, and (ii) an ‘adjusted’ model, which included covari-
ates for age and sex, as well as country of origin and the first three principal 
components. Age was defined as the age at onset of clinical symptoms for cases 
and the age at last interview for controls with normal cognition.

Meta-analysis for common and low-frequency variants was undertaken 
in METAL using a fixed-effects inverse-variance-weighted meta-analysis. 
Rare variants were meta-analyzed in the SeqMeta R package. In the SeqMeta 
pipeline, cohort-level analyses generated score statistics through the function 
‘prepScores()’, which were captured in *.Rdata objects. These *.Rdata objects 
contain the necessary information to meta-analyze SKAT analyses: the indi-
vidual SNP scores, MAF, and a covariance matrix for each unit of aggregation. 
Using the ‘singlesnpMeta()’ and ‘skatOmeta()’ functions of SeqMeta, the *.
Rdata objects for individual studies were meta-analyzed. The seqMeta coef-
ficients and standard errors can be interpreted as a ‘one-step’ approximation 
to the maximum-likelihood estimates. Monomorphic variants in individual 
studies were not excluded as they contribute to the MAF information. Three 
independent analysts confirmed the meta-analysis results.

https://imputationserver.sph.umich.edu/
https://imputationserver.sph.umich.edu/
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In the GERAD/PERADES consortium, 1,740 participants (888 LOAD cases 
and 852 controls) did not have age information available and were excluded 
from the adjusted analyses. Therefore, 16,160 cases and 17,967 controls were 
included in the unadjusted analyses, and 15,272 cases and 17,115 controls were 
included in the adjusted analyses. The primary analysis used the unadjusted 
model given the larger sample size this provided. See Supplementary Figure 
2 for quantile–quantile plots of unadjusted and adjusted analyses.

Stage 2. We tested association with LOAD using the score test and seqMeta 
package. Analyses were conducted under the two models described above, 
in the analysis groups indicated in Supplementary Table 2. Analyses were 
undertaken globally in the GERAD/PERADES cohort and by country in the 
IGAP cohorts, with the EADI1 cohort only including French participants and 
the ACE cohort including only Spanish participants. Following the format of 
the IGAP mega meta-analysis2, four principal components were included for 
the EADI1 data set and one was included in the Italian and Swedish IGAP 
clusters. Meta-analysis was undertaken in the SeqMeta R package.

Stage 3. The association analyses performed followed stage 1 and stage 2 
analytical procedures described below, and only variants in ABI3, PLCG2, 
and TREM2 were examined. For gene-based testing, 10 variants in ABI3, 35 
variants in PLCG2, and 13 variants in TREM2 were examined.

Pathway and gene set enrichment analysis. The eight biological pathway 
clusters previously identified as enriched for association in the IGAP data set37 
were tested for enrichment in this rare variation study (Supplementary Table 
15) to test whether the biological enrichments observed in common variants 
also apply to rare variants. Genes were defined without surrounding genomic 
sequence, as this yielded the most significant excess of enriched pathways in 
the common variation data set37. Gene-wide SKAT-O P values for the variants 
of interest were combined using Fisher’s combined probability test. Given the 
low degree of LD65 between rare variants, our primary analyses did not control 
for LD between pathway genes. However, as a secondary analysis, the APOE 
region was removed and, for each pair of pathway genes within 1 Mb of each 
other, the gene with the more significant SKAT-O P value was removed. This 
highly conservative procedure removes any potential bias in the enrichment 
test both from LD between the genes and dropping less significant genes from 
the analysis.

We also performed pathway analyses on the rare variant data presented using 
all 9,816 pathways used previously. The top pathways are related to lipoprotein 
particles, cholesterol efflux, B cell differentiation, and immune response, and 
they closely parallel the common variant results (Supplementary Table 16).

Protein interaction analysis. Previous analysis of normal brain co-expression 
networks identified four gene modules that were enriched for common vari-
ants associated with Alzheimer’s disease risk in the IGAP GWAS. Each of these 
four modules was also found to be enriched for immune-related genes. The 151 
genes present in two or more of these four modules were particularly strongly 
enriched for IGAP GWAS association. This set of 151 co-expressed genes 
thus contains genes of relevance to Alzheimer’s disease etiology. To identify 
these genes and clarify biological relationships between them for future study, 
protein interaction analysis was performed. First, a list of high-confidence 
(confidence score > 0.7) human protein–protein interactions was downloaded 
from the latest version (v10) of the STRING database (http://string-db.org/). 
Then, protein interaction networks were generated as follows:

1.  Choose a gene to start the network (the ‘seed’ gene).
2.  For each remaining gene in the set of 151 genes, add it to the network if 

its corresponding protein shows a high-confidence protein interaction 
with a protein corresponding to any gene already in the network.

3.  Repeat step 2 until no more genes can be added.
4. Note the number of genes in the network.
5. Repeat, choosing each of the 151 genes in turn as the seed gene.

The largest protein interaction network resulting from this procedure resulted 
in a network of 56 genes connected by high-confidence protein interactions. 
To test whether this network was larger than expected by chance, given the 
total number of protein–protein interactions for each gene, random sets of 151 
genes were generated, with each gene chosen to have the same total number 

of protein–protein interactions as the corresponding gene in the actual data. 
Protein networks were generated for each gene as described above, and the size 
of the largest such network was compared to the observed 56-gene network. 
1,000 random gene sets were generated, and none of them yielded a protein 
interaction network as large as 56 genes. Note that the procedure for generating 
the protein interaction network relies only on protein interaction data and is 
agnostic to the strength of GWAS or rare variant associations for each gene. 
Thus, the strength of genetic association in the set of 56 network genes can be 
tested relative to that in the original set of 151 genes without bias.

Gene set enrichment analysis of the protein network. The set of 56 net-
work genes was tested for association enrichment in the IGAP GWAS using 
ALIGATOR66, as was done in the original pathway analysis, using a range of 
P-value thresholds for defining significant SNPs (and thus the genes contain-
ing those SNPs). The same analysis was also performed on the 95 genes in 
the module overlap but not the protein interaction network (Supplementary 
Table 17). It can be seen that the 56 network genes account for most of the 
enrichment signal observed in the set of 151 module overlap genes.

The set of 56 network genes, the set of 151 module overlap genes, and the 
set of 95 genes in the module overlap but not the network were tested for 
enrichment of association signal in variants with MAF <1% using the gene 
set enrichment method described above. Both the set of 151 genes (P = 1.17 
× 10−6) and the subset of 56 genes (P = 1.08 × 10−7) show highly significant 
enrichment for association in the rare variants with MAF <1%. It can be seen 
that the 56 network genes account for most of the enrichment signal observed 
in the set of 151 module overlap genes (Supplementary Table 17). Again, the 
subset of 56 genes accounts for most of the enrichment signal observed in the 
set of 151 genes, as the remaining 95 genes have only nominally significant 
enrichment (P = 0.043). Both the set of 151 genes (P = 5.15 × 10−5) and the 
subset of 56 genes (P = 2.98 × 10−7) show significant enrichment under a 
conservative analysis excluding the APOE region and correcting for possible 
LD between the genes (Supplementary Table 17). Thus, the rare variants 
show convincing replication of the biological signal observed in the common 
variant GWAS, and, furthermore, the protein network analysis has refined 
this signal to a set of 56 interacting genes. Given that TREM2 has a highly 
significant gene-wide P value (P = 1.01 × 10−13) among variants with MAF 
<1%, enrichment analyses were run omitting it. Both the set of 151 genes (P = 
2.78 × 10−3) and the subset of 56 genes (P = 0.010) (Supplementary Table 18) 
still showed significant enrichment of signal, suggesting that the contribution 
of rare variants to disease susceptibility in these networks is not restricted to 
TREM2. Biological follow-up of genetic results is labor intensive and expen-
sive. It is therefore important to concentrate such work on the genes that are 
most important to Alzheimer’s disease susceptibility. Thus, the rationale for 
reducing the gene set is that it defines a network of genes that are not only 
related through co-expression and protein interaction, but also show enrich-
ment for genetic association signal. These genes are therefore strong candidates 
for future biological study.

Gene expression. We examined mRNA expression of the newly associated 
genes PLCG2 and ABI3 in post-mortem brain tissue from neuropathologi-
cally characterized individuals (508 persons): these genes are expressed at low 
levels in the dorsolateral prefrontal cortex of subjects from two studies of aging 
with prospective autopsy (ranked 12,965 out of 13,484 expressed genes)67. 
However, ABI3 and PLCG2 were more highly expressed in purified microglia/
macrophages from the cortex of 11 subjects from these cohorts (ranked 1,740 
and 2,600, respectively, out of the 11,500 expressed genes) (P.L.D.J., D.A.B. and 
C.C.W., unpublished data). These findings are consistent with the high levels 
of expression of both PLCG2 and ABI3 in peripheral monocytes, spleen, and 
whole blood reported by the ROADmap project and in microglia as reported 
by Zhang et al.38. From the same brain tissue, we examined methylation  
(n = 714)68 and H3K9ac acetylation (n = 676) data and found differential meth-
ylation at four CpG sites and lower acetylation at two H3K9ac sites adjacent 
to PLCG2 and ABI3 in relation to increased global neuritic plaque and tangle 
burden (false discovery rate (FDR) < 0.05). Similarly, high TREM2 expression 
has been shown to correlate with increasing neuritic plaque burden69.

AMP-AD gene expression data. RNA sequencing was used to measure gene 
expression levels in the temporal cortex of 80 subjects with pathologically 

http://string-db.org/
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confirmed Alzheimer’s disease and 76 controls without any neurodegenera-
tive pathologies obtained from the Mayo Clinic Brain Bank and the Banner 
Sun Health Institute. The human RNA sequencing data are deposited in the 
Accelerating Medicines Partnership-AD (AMP-AD) knowledge portal housed 
in Synapse (https://www.synapse.org/#!Synapse:syn2580853/wiki/66722). 
After quality control, our post-mortem human cohort had 80 subjects with 
pathologically confirmed Alzheimer’s disease and 76 controls without any 
neurodegenerative pathologies. Assuming two samples of 100 per group, two-
sample t test, same s.d., we would have 80% power to detect effect sizes of 0.40, 
0.49, and 0.59 at P < 0.05, 0.01, and 0.001, respectively, where effect size is the 
difference in means between two groups divided by the within-group s.d. The 
human RNA sequencing data overview, quality control, and analytic meth-
ods are available at the following Synapse pages, respectively: syn3163039, 
syn6126114, and syn6090802. Multivariable linear regression was used to test 
for association of gene expression levels with Alzheimer’s disease diagnosis 
using two different models. In the simple model, we adjust for age at death, 
sex, RNA integrity number (RIN), tissue source, and RNA-seq flow cell. In the 
comprehensive model, we adjust for all these covariates, and brain cell type 
markers for five cell-type-specific genes (CD68 (microglia), CD34 (endothe-
lial), OLIG2 (oligodendroglia), GFAP (astrocyte), ENO2 (neuron)) to account 
for cell number changes that occur with Alzheimer’s disease neuropathology. 
TREM2, PLCG2, and ABI3 expression is significantly higher in Alzheimer’s 
disease temporal cortex before correcting for cell type (simple model), but 
this significance is abolished after adjusting for cell-type-specific gene counts 
(comprehensive model). This suggests that these elevations are likely a conse-
quence of changes in cell types that occur with Alzheimer’s disease, most likely 
microgliosis, given that TREM2, PLCG2, and ABI3 are microglia-enriched 
genes15 (Supplementary Fig. 12 and Supplementary Table 19).

Data availability. Summary statistics for the 43 genetic associations identified 
are provided in Supplementary Table 6.

Stage 1 data (individual level) for the GERAD exome chip cohort can be 
accessed by applying directly to Cardiff University. Stage 1 ADGC data are 

deposited in a NIAGADS- and NIA/NIH-sanctioned qualified-access data 
repository. Stage 1 CHARGE data are accessible by applying to dbGaP for all 
US cohorts and to Erasmus University for Rotterdam data. AGES primary data 
are not available owing to Icelandic laws. Stage 2 and stage 3 primary data are 
available upon request.

A detailed description of the Mayo Clinic RNA-seq data is available to 
all qualified investigators through the Accelerating Medicines Partnership in 
Alzheimer’s Disease (AMP-AD) knowledge portal that is hosted in the Synapse 
software platform from Sage Bionetworks under Synapse IDs syn3157182 and 
syn3435792 (mouse data) and syn3163039 (human data).
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